If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+30a-540=0
a = 1; b = 30; c = -540;
Δ = b2-4ac
Δ = 302-4·1·(-540)
Δ = 3060
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3060}=\sqrt{36*85}=\sqrt{36}*\sqrt{85}=6\sqrt{85}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-6\sqrt{85}}{2*1}=\frac{-30-6\sqrt{85}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+6\sqrt{85}}{2*1}=\frac{-30+6\sqrt{85}}{2} $
| A2+30a-540=0 | | 0=7x^2-26 | | 1+x=0.24(10+1x) | | 1-(143/x)=0.30 | | a2+15a-700=0 | | 6x²+34x+20=0 | | 10x-40=-30 | | 10x-40=-15 | | 15*x^2+22*x+10=0 | | y=-3(-8y+86)+28 | | 8r-(5r-3r)=5+r | | {5}{6}t=-{3}{4} | | 16=4x+8/3 | | 0.07(a+8=0.25(3-a) | | (2^9x)•(2^3x)=64 | | 0.1(a+2)=0.25(2-a) | | x=50^x | | 5x×15=95 | | 3(x+9)+2=3x+8 | | x=320000^x | | 2x+3=⅓+1 | | 1/(3-2x)=0 | | 9x+18=-24+6x | | 24a-40-8a-12=12 | | 4(x+1)-8(5-x)=3 | | 8*7^x=96000 | | X=0.4x+222250 | | 3k-8=13 | | (3x-4=2(x+7)-8) | | 13x+8+8x=-9 | | 6x-3x+6=2+8 | | 2+y+6=y |